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Nuclear systems near the drip lines offer an exciting opportunity to advance our understanding of
the interactions among nucleons, which has so far been mostly based on the study of stable nuclei.
However, this is not a goal devoid of challenges. From a theoretical standpoint, it requires the ca-
pability to address within an ab initio framework not only bound, but also resonant and scattering
states, all of which can be strongly coupled. In recent years, significant progress has been made in
ab initio nuclear structure and reaction calculations based on input from Quantum Chromodynam-
ics employing Hamiltonians constructed within chiral effective field theory. In this contribution, we
present a brief overview of one of such methods, the ab initio no-core shell model with continuum,
and its applications to nucleon and deuterium scattering on light nuclei. The first investigation of the
low-lying continuum spectrum of 6He within an ab initio framework that encompasses the 4He+n+n
three-cluster dynamics characterizing its lowest particle-decay channel will also be briefly presented.

KEYWORDS: ab initio calculations, exotic nuclei, low-energy reactions

1. Ab initio nuclear theory including the continuum

Light exotic nuclei offer an exciting opportunity to test our understanding of nuclear properties
in terms of forces emerging from the underlying theory of Quantum Chromodynamics (QCD). This
is not a goal devoid of challenges. Experimentally, the study of rare nuclei is challenged by their
short half lives and minute production cross sections. A major stumbling block in nuclear theory has
to deal with the low breakup thresholds, which can lead to multi-particle emissions, and can cause
bound, resonant and scattering states to be strongly coupled. Even worse, many of the systems we are
interested in are simply unbound. Hence, to achieve a fundamental understanding of exotic nuclei we
need both advanced experimental techniques and an ab initio nuclear theory including the continuum.
In the following we briefly outline the elements of one of such theories, the ab initio no-core shell
model with continuum (NCSMC).

1.1 Nuclear forces
To develop such an ab initio theory, we start from nuclear interactions grounded in the underlying

theory of Quantum Chromodynamics via chiral effective field theory [1–3], where nucleons and pions
are the only explicit degrees of freedom and the strong interaction is systematically expanded in terms
of positive powers of small momenta Q (the generic momentum in the nuclear process or the pion
mass) over the chiral symmetry breaking scale Λ ∼ 1 GeV. The nuclear forces emerging from such
a procedure order by order are schematically represented by the diagrams of Fig. 1. In particular, we

1

Quaglioni, Sofia
LLNL-PROC-661058



Fig. 1. Schematic of chi-
ral EFT interactions. Solid
lines represent nucleons and
dashed lines pions. The con-
tour highlights the terms em-
ployed in the many-body
calculations presented here.

adopt a Hamiltonian based on the chiral N3LO NN interaction of Ref. [4] and N2LO 3N force of
Ref. [5]. Except for the 9Be results of Sec. 2.2, these are interactions that are entirely constrained in
the two- and three-body [6] systems, and will be used to make predictions for heavier systems.

1.2 Similarity renormalization group method
The next crucial requirement for an ab initio theory including the continuum is to achieve con-

verged results working within the large but finite model spaces that are accessible with modern su-
percomputers. To achieve this, we soften the chiral interactions using the similarity renormalization
group (SRG) method [7–10]. This employes a continuous unitary transformation of the Hamiltonian

Hλ = UλHλ=∞U†λ , (1)

that can be written as a flow equation with respect to a parameter λ with units of momentum,

dHλ
dλ
= − 4
λ5 [η(λ),Hλ] , (2)

where η(λ) is a generator commonly chosen to be the commutator of the evolved Hamiltonian with
the kinetic energy operator, η(λ) = [T,Hλ]. As λ evolves from infinity (corresponding to the bare
Hamiltonian) towards zero, low- and high-momentum parts of the interaction become more and more
decoupled so that convergence of many-body calculations can be reached working in increasingly
smaller model spaces, as shown in Fig. 2(a) for the ground-state (g.s.) energy of the 4He nucleus.
Here bare and SRG-evolved NN + 3N interactions converge to the same final result for the energy.
Only the convergence rate is much faster with the SRG interactions. A drawback of this method (as
for other modern effective interactions) is that the evolution induces three- and higher-body (up to
A-body) terms into the Hamiltonian, even when starting from a bare NN interaction. Fortunately, for
A ≤ 12 stopping at three-body terms leads to energies [10] and phase shifts [11] mostly indepen-
dent of λ, i.e. the unitarity of the transformation is preserved. In addition, when using SRG-evolved
Hamiltonians, for consistency one should also evolve any other operator using the same unitary trans-
formation [12, 13]. As an example, Fig. 2(b) shows the effect of induced two-and three-body terms
for the expectation value of the evolved r2 operator on the 3H g.s. wave function. The unitarity of the
transformation is fully recovered once all terms up to the three-body level are included.
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Fig. 2. The (a) g.s. energy of the 4He nucleus as a function of the NCSM model-space size Nmax and (b) root-
mean-square matter radius of tritium as a function of the SRG momentum scale λ. In panel (a), results obtained
with the bare chiral NN + 3N forces (dashed line) are compared with those obtained after SRG evolution to
λ = 2.0 fm−1 (solid line). In panel (b), lines with circles, squares and triangles correspond to calculations with
the SRG-evolved NN + 3N Hamiltonian and bare, 2-body evolved and 3-body evolved operators, respectively.
In both panels, the thin dotted lines show the converged bare result.

1.3 No-core shell model with continuum
The ab initio no-core shell model with continuum [14, 15] provides a unified framework for the

description of structural and reaction properties of light nuclei. In this approach the nuclear many-
body states are seen as superimpositions of square-integrable energy eigenstates of the A-nucleon
system, |AαJπT 〉, and continuous resonating-group method (RGM) [16, 17] wave functions,

|ΦJπT
νr 〉 =

[ (
|A − a α1Iπ1

1 T1〉|a α2Iπ2
2 T2〉

)(sT )
Y&(r̂A−a,a)

](JπT ) δ(r − rA−a,a)
rrA−a,a

. (3)

Here, a target and a projectile composed of A − a and a ≤ A nucleons, respectively and whose
centers of mass are separated by the relative coordinate (rA−a,a are traveling in a 2s&J wave of rel-
ative motion (with s the channel spin, and & the relative momentum of the system). The index
ν = {A−aα1I π1

1 T1; aα2I π2
2 T2; s&} collects all quantum numbers associated with this continuous ba-

sis . For each channel of total angular momentum, parity and isospin (JπT ), the resulting NCSMC
translational-invariant ansatz is given by:

|ΨJπT
A 〉 =

∑

α

cJπT
α |AαJπT 〉+

∑

ν

∫
dr r2γ

JπT
ν (r)

r
Aν|ΦJπT

νr 〉 . (4)

The eigenstates of each cluster of nucleons and of the compound nucleus, identified respectively by
the energy labels α1(2) and α, are antisymmetric under exchange of internal nucleons. They are consis-
tently obtained ahead of time by means of the ab initio no-core shell model (NCSM) [18] through the
diagonalization of their respective microscopic Hamiltonians in finite bases constructed from many-
body harmonic oscillator (HO) wave functions with up to Nmax HO excitations above the unperturbed
configuration and frequency !Ω. The full antisymmetrization of the basis (3) is enforced by introduc-
ing an appropriate inter-cluster antisymmetrizer Aν. Finally, cJπT

α and γJπT
ν (r) = (N−1/2χ)ν(r) are
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Fig. 3. Diagonal 6He+n phase shifts obtained with the chiral NN potential SRG-evolved to λ = 2.02 fm−1

by working within an Nmax = 12 and !Ω = 16 MeV HO model space. Panel (a) compares NCSM/RGM (blue
lines) and NCSMC (red lines) results including the 6He 0+ g.s. only (dotted lines), 0+ and 2+1 states (dashed
lines), and 0+, 2+1 and 2+2 states (solid lines). Panel (b) shows S - and P-wave phase shifts calculated with the
NCSMC by including the three lowest 6He states. The dashed vertical area indicates the experimental centroid
and width of the 7He ground state.

respectively discrete and continuous variational amplitudes, solutions of the coupled equations




Eα δαα′ (hN− 1
2 )αν′(r′)

(hN− 1
2 )α′ν(r) (N− 1

2HN− 1
2 )νν′(r, r′)







cα′
χν′ (r′)

r′


 = E




δαα′ (gN− 1
2 )αν′(r′)

(gN− 1
2 )α′ν(r) δνν′δ(r−r′)

rr′







cα′
χν′ (r′)

r′


 . (5)

Here, E denotes the total energy of the system and the two by two block-matrices on the left- and
right-hand side of the equation represent, respectively, the NCSMC Hamiltonian and norm (or over-
lap) kernels. In the upper diagonal blocks are the Hamiltonian (overlap) matrix elements over the
discrete A-nucleon states. Similarly, those over the orthonormalized continuous portion of the ba-
sis appear in the lower diagonal block and are obtained from Nνν′(r, r′) = 〈ΦJπT

νr |AνAν′ |ΦJπT
ν′r′ 〉 and

Hνν′(r, r′) = 〈ΦJπT
νr |AνHAν′ |ΦJπT

ν′r′ 〉. The off diagonal blocks contain the couplings between the two
sectors of the basis, with gαν(r)= 〈AαJπT |Aν|ΦJπT

νr 〉 and hαν(r)= 〈A λJπT |HAν|ΦJπT
νr 〉. The scattering

matrix (and from it any scattering observable) follows from matching the solutions of Eq. (5) with
the known asymptotic behavior of the wave function at large distances by means of the microscopic
R-matrix method [19, 20]. Finally we note that, in principle, the expansion of Eq. (4) can be further
generalized to include a three-cluster component suitable for the description of, e.g., Borromean halo
nuclei and reactions with final three-body states [21, 22].

2. Applications

2.1 The unbound 7He nucleus as a testing ground
An ideal system to showcase new achievements made possible by the ab initio NCSMC is

7He [14]. The unified description of the structural and reaction properties of this unbound nucleus
cannot be realized within the traditional NCSM. One could calculate its properties within a 6He+n
binary-cluster expansion, that is by retaining only the second term of Eq. (4) and solvingN− 1

2HN− 1
2 χ =

E χ. The results of such an approach, which we call NCSM/RGM [23], are indicated by the blue lines
in Fig. 3(a). However, 6He is a loosely bound nucleus, so its polarization plays an important role,
as can be seen from the dependence of the NCSM/RGM results on the number of six-body cluster
eigenstates included in the calculation. Further, a limitation (due to computational limitations) to just
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Fig. 4. Computed (lines) 4He+n (a) phase shifts and (b) total cross section obtained with the chiral NN +3N
Hamiltonian SRG-evolved to λ = 2.0 fm−1 by working within the NCSMC at Nmax = 13 and !Ω = 20 MeV
compared to experiment (crosses). Panel (a) shows the convergence with respect to the inclusion of the first
seven low-lying states of the 4He target (indicated in the legend). In panel (b) the effect of the initial chiral
3N force is highlighted by comparing the full result (red solid line) with that obtained with the chiral NN
interaction SRG-evolved at the three-body level (dashed blue line).

a few of the lowest 6He eigenstates in the NCSM/RGM expansion would be questionable especially
because, except for the lowest 2+ state, all other 6He excited states are either broad resonances or
simply states in the continuum. With the NCSMC these challenges are overcome. As shown by the
red lines in Fig. 3(a), the further inclusion of square integrable energy-eigenstates of the 7He nucleus
(in the present calculation four 3/2− states, of which only the first produces a substantial effect on
the 2P3/2 resonance) compensates for missing higher 6He excitations, leading to a much faster con-
vergence rate. Finally, the present NCSMC calculation yields the well established 3/2− g.s. and 5/2−
resonances close to measurements, but does not support the presence of a narrow low-lying 1/2− state
advocated by some [24]. Instead, the 2P1/2 results of Fig. 3(b) are in fair agreement with the 1/2−
properties measured in the neutron pick-up and proton-removal experiments of Ref. [25].

2.2 Three-nucleon forces and continuum
One of the questions we are trying to answer by means of ab initio calculations is what is the

role of the chiral 3N force in scattering observables and in the (near) continuum spectrum of light
nuclei. The unbound 5He nucleus is an excellent testing ground for such an endeavor. Earlier stud-
ies of its g.s. and 1/2− resonances have demonstrated that they are sensitive to the strength of the
spin-orbit component of the nuclear Hamiltonian, part of which is carried by the 3N force [23, 26].
A NCSM/RGM investigation of the elastic scattering of nucleons on 4He using for the first time the
chiral NN + 3N Hamiltonian was recently published in Ref. [11]. However, significant variations of
the 2P3/2 and 2P1/2 phase shifts at low-energy as a function of the number of states (the first seven)
used to describe the 4He nucleus did not allow for definitive conclusions on the ability of the present
Hamiltonian to reproduce the observed 5He properties. As shown in Fig. 4(a), this issue can be solved
by carrying out NCSMC calculations, where the model space of Ref. [11] is augmented by coupling
fourteen (of which three 3/2− and one 1/2−) NCSM eigenstates of the 5He compound nucleus [15].
As for the 7He nucleus in the previous section, the convergence with respect to the number of target
states is now excellent. Further, the total cross section, presented in Fig. 4(b), reproduces the exper-
imental data rather well and the 3N force plays a fundamental role in reaching such an agreement.
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Fig. 5. Computed low-lying energy spectrum of 9Be (a) negative- and (b) positive-parity states compared
to experiment. The chiral NN + 3N Hamiltonian of Ref. [29] with evolution parameter λ = 2 fm−1 was used.
The negative(positive)-parity NCSMC calculation, coupling 9Be square integrable eigenstates with 8Be(0+, 2+)
binary cluster states, was performed in a Nmax = 12(11), !Ω = 20 MeV HO model space. Here Ekin indicates
the center-of-mass energy with respect to the 8Be+n threshold.

To further investigate the interplay between 3N-force and continuum effects, we carried out NC-
SMC calculations with the chiral NN + 3N interactions for the structure of 9Be. This is a notoriously
challenging-to-describe nucleus for ab initio approaches based on bound-state techniques such as the
NCSM. The positive parity resonances are in general found too high compared to experiment and the
splitting between the lowest 5/2− and 1/2− resonances [highlighted in Fig.5(a)] tends to be overesti-
mated when 3N effects are included [27]. Here we discuss preliminary results obtained by studying
9Be as a linear combination of 9-body square-integrable eigenstates and 8Be+n binary-cluster states
with the 8Be in its ground and 2+ state [28]. The splitting between the 5/2− and 1/2− levels is sub-
stantially reduced when the continuum is included due to a shift towards lower energies of the 2P1/2
resonance. However, the most dramatic continuum effects are found in the positive-parity resonances,
shown in Fig. 5(b). The 1/2+ and the 3/2+ S -wave resonances are several MeV lower in the NCSMC,
close to their experimental value.

A similar investigation was also performed for the 6Li nucleus. While lighter than 9Be, the com-
putational challenge in describing this nucleus comes from its low-lying 4He+d particle-emission
threshold. Building upon the NCSM/RGM framework of Ref. [30], the NCSMC formalism to treat
deuterium-nucleus scattering was recently developed and first applied to describe this system using
chiral NN + 3N interactions [31]. Figure 6 shows preliminary results for the 6Li energy spectrum of
states and their widths, obtained in a Nmax = 11 model space containing six-body eigenstates coupled
to 4He(g.s.)+d binary cluster wave functions with up to seven deuterium pseudo-excited states in the
3S 1 −3 D1, 3D2 and 3D3 −3 G3 channels. The 4He+d continuum plays an especially important role
for the higher-lying 2+ and 1+ resonances. Combined with the inclusion of the 3N force, the NCSMC
yields a rather good agreement with the observed spectrum. Interestingly, the 3+ excitation energy
with respect to the g.s. is not very sensitive to either continuum or 3N-force effects.

2.3 Ab initio description of three-cluster dynamics
Achieving an ab initio treatment of the interactions among three nuclear fragments, such as those

occurring in Borromean halos or in three-body breakup processes, is another important stepping
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Fig. 6. Computed low-lying spectrum of positive-
parity states (and their widths Γ) for the 6Li nucleus
with (red lines) and without (blue lines) inclusion of
the initial chiral 3N force compared to experiment
(black lines). Both NN and NN + 3N Hamiltonians
were SRG-evolved at the three-body level, using λ =
2.0 fm−1. Two sets of Nmax = 11, !Ω = 20 MeV
results are shown: NCSM calculations of 6Li energy
eigenstates, and NCSMC calculations further includ-
ing 4He+d binary cluster states.

Fig. 7. Positions and widths (indicated by Γ) in
MeV of low-lying positive- and negative-parity reso-
nances of the 6He nucleus as obtained from ab initio
NCSM/RGM calculations of the 4He+n+n scattering
phase shifts using the SRG-evolved chiral NN interac-
tion with λ = 1.5 fm−1 and an Nmax = 13, !Ω = 14
MeV HO model space compared to new SPIRAL mea-
surements [32] performed at GANIL, France. The fig-
ure is taken from Ref. [22].

stone towards gaining a basic understanding of nuclei and their reactions. At present we are in the
process of generalizing the NCSMC framework of Sec. 1.3 to include three-cluster basis states. The
development of the NCSM/RGM component of the formalism for the treatment of core+n+n systems
starting from a two-nucleon Hamiltonian has been completed and recently applied to the description
of bound [21] and continuum states [22] of the 6He nucleus within a 4He(g.s.)+n+n cluster basis.
The energy spectrum of states obtained with the SRG-evolved chiral NN potential with λ = 1.5 fm−1

is shown in Figure 7. We find the known Jπ = 2+ resonance as well as results consistent with two
new resonances recently observedat the SPIRAL facility of Ganil [32]: a second 2+ and a 1+ (the
parity of the 4.3 MeV J = 1 state was not determined in the experiment). Additional resonant states,
not observed, emerged in the 0− and 2− negative-parity channels. At the same time, our three-body
scattering phase shifts in the 1− channel present only a very broad structure and do not support the
presence of a low-lying soft dipole mode.

3. Conclusions

The ab initio description of light dripline nuclei with QCD-guided NN + 3N forces is now be-
coming possible, thanks in part to the NCSMC approach. This is an ab initio theory including the
continuum which combines the efficient description of short- and medium-range correlations of the
NCSM with the ability of the NCSM/RGM of describing the scattering physics of a system. This
theory is undergoing exciting developments, among which in this contribution we discussed the in-
clusion of the 3N force in the description of nucleon- and deuteron-nucleus collisions as well as the
extension to the treatment of three-cluster dynamics. This is leading us to better understand the inter-
play between 3N-force and continuum effects in p-shell nuclei such as 6Li and 9Be and to refine our
theoretical description of Borromean nuclei such as 6He.
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